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1. Introduction

In this paper we study the asymptotic behavior (as ε → 0) of the eigenvalues of the following problems
{
−div(aε(x,∇uε)) = λερε|uε|p−2uε in Ω

uε = 0 on ∂Ω,
(1.1)

where Ω ⊂ R
N is a bounded domain, ε is a positive real number, and λε is the eigenvalue parameter.

The weight functions ρε(x) are assumed to be positive and uniformly bounded away from zero and infinity

0 < ρ− ≤ ρε(x) ≤ ρ+ < ∞ (1.2)

and the family of operators aε(x, ξ) have precise hypotheses that are stated below, but the prototypical 
example is

aε
(
x,∇uε

)
=

∣∣Aε(x)∇uε · ∇uε
∣∣ p−2

2 Aε(x)∇uε, (1.3)

with 1 < p < +∞, and Aε(x) is a family of uniformly elliptic matrices (both in x ∈ Ω and in ε > 0).
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In this work we will deal with the problem where the operator aε(x, ξ) is independent of ε > 0, i.e. 
aε(x, ξ) = a(x, ξ) for every ε > 0.

The study of this type of problems has a long history due to its relevance in different fields of applica-
tions. The problem of finding the asymptotic behavior of the eigenvalues of (1.1) is an important part of 
what is called Homogenization Theory. Homogenization Theory is applied in composite materials in which 
the physical parameters such as conductivity and elasticity are oscillating. Homogenization Theory tries
to get a good approximation of the macroscopic behavior of the heterogeneous material by letting the pa-
rameter ε → 0. The main references for the homogenization theory of periodic structures are the books by 
Bensoussan–Lions–Papanicolaou [4], Sanchez–Palencia [21], Olĕınik–Shamaev–Yosifian [18] among others.

In the linear setting (i.e., aε(x, ξ) as in (1.3) with p = 2) this problem is well understood. It is known 
that, up to a subsequence, there exists a limit operator ah(x, ξ) = Ah(x)ξ and a limit function ρ̄ such that 
the spectrum of (1.1) converges to that of the limit problem.

{
−div(ah(x,∇u)) = λρ̄|u|p−2u in Ω

u = 0 on ∂Ω.
(1.4)

Let us recall that the convergence of eigenvalues in the multidimensional linear case was studied in 1976 by 
Boccardo and Marcellini [5] for general bounded matrices. Kesavan [16] studied the problem in an periodic 
frame. This is an important case of homogenization, i.e. when ρε(x) = ρ(xε ) and Aε(x) = A(xε ) where ρ(x)
and A(x) are Q-periodic functions, Q being the unit cube in RN and in this case, the limit problem can be 
fully characterized and so the entire sequence ε → 0 is convergent. See [16,17].

In the general nonlinear setting, Baffico, Conca and Rajesh [3], relying on the G-convergence results of 
Chiadó Piat, Dal Maso and Defranceschi [9] for monotone operators, study the convergence problem of the 
principal eigenvalue of (1.1). The concept of G-convergence of linear elliptic second order operators was 
introduced by Spagnolo in [23].

The convergence problem for higher (variational) nonlinear eigenvalues was addressed by T. Champion 
and L. De Pascale in [8] where by means of the Γ -convergence methods they are able to show convergence 
of the (variational) eigenvalues of (1.1) to those of the limit equation (1.4).

Now, we turn our attention to the order of convergence of the eigenvalues that is the focus of this work. 
To this end, we restrict ourselves to the problems

{
−div(a(x,∇uε)) = λερε|uε|p−2uε in Ω

uε = 0 on ∂Ω,
(1.5)

where the family of weight functions ρε are given in terms of a single bounded Q-periodic function ρ in the 
form ρε(x) := ρ(x/ε), Q being the unit cube of RN .

The limit problem is then given by

{
−div(a(x,∇u)) = λρ̄|u|p−2u in Ω

u = 0 on ∂Ω,
(1.6)

where ρ̄ is the average of ρ in Q, i.e. ρ̄ =
∫
Q
ρ(x) dx.

The first estimate of the order of convergence of the eigenvalues, for the linear case, can be found in 
Chapter III, Section 2 of [18]. By estimating the eigenvalues of the inverse operator, which is compact, and 
using tools from functional analysis in Hilbert spaces, it is proved that

∣∣λε
k − λk

∣∣ ≤ Cλε
k(λk)2

ε ε
1
2 .
1 − λkβk
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Here, C is a positive constant, and βk
ε satisfies

0 ≤ βk
ε < λ−1

k ,

with

lim
ε→0

βk
ε = 0

for each k ≥ 1.
Santosa and Vogelius in [22] show that the difference between λε

k and λk is of order ε. Moreover, when 
λk is a simple eigenvalue they obtain the limit of the incremental quotient under certain hypotheses on the 
domain.

The problem, again in the linear setting and in dimension N = 1, with a = 1, was recently studied by 
Castro and Zuazua in [6,7]. In those articles the authors, using the so-called WKB method which relays on 
asymptotic expansions of the solutions of the problem, and the explicit knowledge of the eigenfunctions and 
eigenvalues of the constant coefficient limit problem, proved

∣∣√λε
k −

√
λk

∣∣ ≤ Ck2ε,

equivalently, since the Weyl’s formula implies that λε
k ∼ k2,

∣∣λε
k − λk

∣∣ ≤ Ck3ε

and they also presented a variety of results on correctors for the eigenfunction approximation.
In the linear problem, in any space dimension, Kenig, Lin and Shen [14] (allowing an ε dependence in 

the diffusion matrix of the elliptic operator) proved that for Lipschitz domains Ω one has

∣∣λε
k − λk

∣∣ ≤ Cε
∣∣log(ε)

∣∣ 1
2+σ

for any σ > 0, C depending on k and σ.
Moreover, the authors show that if the domain Ω is more regular (C1,1 is enough) they can get rid of 

the logarithmic term in the above estimate. However, no explicit dependence of C on k is obtained in that 
work.

Later on, in [15] the authors obtain the precise dependence on k showing that

∣∣λε
k − λk

∣∣ ≤ Ck
3
N ε

∣∣log(ε)
∣∣ 1
2+σ

for any σ > 0, C depending on σ. Again, when the domain Ω is smooth, the logarithmic term can be 
removed.

In this paper we analyze the order of convergence of eigenvalues of (1.5) to the ones of (1.6) and we prove 
that,

∣∣λε
k − λk

∣∣ ≤ Ck
p+1
N ε

with C independent of k and ε. In this result, by λε
k and λk we refer to the variational eigenvalues of 

problems (1.5) and (1.6) respectively.
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Some remarks are in order:

(1) Classical Weyl’s estimates on the eigenvalues of second order N -dimensional problems show that λk

and λε
k behaves like ck

2
N , with c depending only on the coefficients of the operator and N . Hence, the 

order of growth of the right-hand side in the estimate of [18] is

λε
k(λk)2ε

1
2

1 − λkβε
k

∼ k
6
N ε

1
2

1 − λkβε
k

≤ Ck
6
N ε

1
2 .

Moreover, the constant involved in their bound is unknown.
(2) If we specialize our result to the one dimensional linear case, we recover the estimate obtained in [7]. 

Moreover, we are considering more general weights ρ since very low regularity is needed and the estimate 
is valid for any k. On the other hand, no corrector results are presented here.

(3) In our result no regularity assumptions on Ω are needed. Any bounded open set will do.
(4) The constant C entering in our estimate, can be computed explicitly in terms of the weight ρ, the 

diffusion operator a(x, ξ) and the Poincaré constant in the unit cube of RN (see Theorem 3.6).

In the one dimensional problem, we can provide a extremely elementary proof of Theorems 3.5 and 3.6, 
generalizing the estimates obtained in [7]. Moreover, in this case an oscillating coefficient can be allowed.

Let us mention that in the nonlinear case considered in this paper there are no quantitative estimates 
on the convergence of the eigenfunctions. However, it is possible to prove in one spatial dimension that the 
zeros of the eigenfunctions converge to the zeros of the ones of the limit problem and we also find an explicit 
estimate of the rate of convergence of the nodal domain.

Organization of the paper The rest of the paper is organized as follows: In Section 2, we collect some 
preliminary results on monotone operators that are needed in order to deal with (1.1) and some facts 
about the eigenvalue problem. In Section 3 we prove the convergence of the kth-variational eigenvalue 
of problem (1.5) to the kth-variational eigenvalue of the limit problem (1.6), and we study the rates of 
convergence. In Section 4 we study the one dimensional problem, and we show in Section 5 that in this case, 
an oscillating coefficient can be allowed. In Section 6 we deal with the zeros of eigenfunctions, and we close 
the paper in Section 7 with some numerical results.

2. Preliminary results

In this section we review some results gathered from the literature, enabling us to clearly state our results 
and making the paper self-contained.

2.1. Monotone operators

We consider A: W 1,p
0 (Ω) → W−1,p′(Ω) given by

Au := −div
(
a(x,∇u)

)
,

where a: Ω × R
N → R

N satisfies, for every ξ ∈ R
N and a.e. x ∈ Ω, the following conditions:

(H0) measurability: a(·, ·) is a Carathéodory function, i.e. a(x, ·) is continuous a.e. x ∈ Ω, and a(·, ξ) is 
measurable for every ξ ∈ R

N .
(H1) monotonicity: 0 ≤ (a(x, ξ1) − a(x, ξ2)) · (ξ1 − ξ2).
(H2) coercivity: α|ξ|p ≤ a(x, ξ) · ξ.
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(H3) continuity: |a(x, ξ)| ≤ β|ξ|p−1.
(H4) p-homogeneity: a(x, tξ) = tp−1a(x, ξ) for every t > 0.
(H5) oddness: a(x, −ξ) = −a(x, ξ).

Let us introduce Ψ(x, ξ1, ξ2) = a(x, ξ1) · ξ1 + a(x, ξ2) · ξ2 for all ξ1, ξ2 ∈ R
N , and all x ∈ Ω; and let 

δ = min{p/2, (p − 1)}.

(H6) equi-continuity:

∣∣a(x, ξ1) − a(x, ξ2)
∣∣ ≤ cΨ(x, ξ1, ξ2)(p−1−δ)/p[(a(x, ξ1) − a(x, ξ2)

)
· (ξ1 − ξ2)

]δ/p
(H7) cyclical monotonicity: 

∑k
i=1 a(x, ξi) · (ξi+1 − ξi) ≤ 0, for all k ≥ 1, and ξ1, . . . , ξk+1, with ξ1 = ξk+1.

(H8) strict monotonicity: let γ = max(2, p), then

α|ξ1 − ξ2|γΨ(x, ξ1, ξ2)1−(γ/p) ≤
(
a(x, ξ1) − a(x, ξ2)

)
· (ξ1 − ξ2).

See [3], Section 3.4 where a detailed discussion on the relation and implications of every condition 
(H0)–(H8) is given.

In particular, under these conditions, we have the following proposition:

Proposition 2.1. (See [3], Lemma 3.3.) Given a(x, ξ) satisfying (H0)–(H8) there exists a unique Carathéodory 
function Φ which is even, p-homogeneous strictly convex and differentiable in the variable ξ satisfying

α|ξ|p ≤ Φ(x, ξ) ≤ β|ξ|p (2.1)

for all ξ ∈ R
N a.e. x ∈ Ω such that

∇ξΦ(x, ξ) = pa(x, ξ)

and normalized such that Φ(x, 0) = 0.

Remark 2.2. When the operator a(x, ξ) is given by (1.3), the corresponding potential function Φ is given by

Φ(x, ξ) =
∣∣A(x)ξ · ξ

∣∣ p
2 .

2.2. The nonlinear eigenvalue problem

In this section we review some properties of the spectrum of (1.1) for fixed ε. That is, we study

{
−div(a(x,∇u)) = λρ|u|p−2u in Ω

u = 0 on ∂Ω,
(2.2)

where 0 < ρ− ≤ ρ(x) ≤ ρ+ and 0 < α ≤ a(x) ≤ β for some constants ρ−, ρ+, α and β.
We denote by

Σ :=
{
λ ∈ R: there exists u ∈ W 1,p

0 (Ω), nontrivial solution to (2.2)
}

the spectrum of (2.2).
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By means of the critical point theory of Ljusternik–Schnirelmann it is straightforward to obtain a discrete 
sequence of variational eigenvalues {λk}k∈N tending to +∞. We denote by Σvar sequence of variational 
eigenvalues.

The kth-variational eigenvalue is given by

λk = inf
C∈Γk

sup
v∈C

∫
Ω
Φ(x,∇v) dx∫

Ω
ρ(x)|v|p dx (2.3)

where Φ is the potential function given by Proposition 2.1 and

Γk =
{
C ⊂ W 1,p

0 (Ω) : C compact, C = −C, γ(C) ≥ k
}

and γ(C) is the Kranoselskii genus, see [20] for the definition and properties of γ.
For the one dimensional p-Laplace operator in J = (0, �),

−
(
|w′|p−2w′)′ = μ|w|p−2w (2.4)

with zero Dirichlet boundary conditions w(0) = w(�) = 0, we have

μk = inf
C∈Ck

sup
v∈C

∫
J
|v′|p dx∫

J
|v|p dx , (2.5)

with v ∈ W 1,p
0 (J).

Here, all the eigenvalues and eigenfunctions can be found explicitly:

Theorem 2.3. (See Del Pino, Drabek and Manasevich, [10].) The eigenvalues μk and eigenfunctions wk of 
Eq. (2.4) on the interval J are given by

μk =
πp
pk

p

�p
,

wk(x) = Sp(πpkx/�).

Remark 2.4. It was proved in [11] that they coincide with the variational eigenvalues given by Eq. (2.5). 
However, let us observe that the notation is different in both papers.

The function Sp(x) is the solution of the initial value problem

{
−(|v′|p−2v′)′ = |v|p−2v

v(0) = 0, v′(0) = 1,

and is defined implicitly as

x =
Sp(x)∫
0

(
p− 1
1 − tp

)1/p

dt.

Moreover, its first zero is πp, given by

πp = 2
1∫ (

p− 1
1 − tp

)1/p

dt.
0
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We will call Cp the derivative of Sp.
In [2], problem (2.2) in one space dimension with a(x, u′) = |u′|p−2u′ is studied and, among other things, 

it is proved that any eigenfunction associated to λk has exactly k nodal domains. As a consequence of this 
fact follows the simplicity of every variational eigenvalue.

The exact same proof of [2] works for general a(x, u′), and so we obtain the following:

Theorem 2.5. Every eigenfunction of (2.2) in dimension N = 1 corresponding to the kth-eigenvalue λk

has exactly k − 1 zeroes. Moreover, for every k, λk is simple, consequently the eigenvalues are ordered as 
0 < λ1 < λ2 < · · · < λk ↗ +∞.

Now, using the same ideas as in [12] is easy to prove, for the one dimensional problem, that the spectrum 
of (2.2) coincides with the variational spectrum. In fact, we have:

Theorem 2.6. Σ = Σvar, i.e., every solution of problem (2.4) is given by (2.5).

Proof. The proof of this theorem is completely analogous to that of Theorem 1.1 in [12]. �
3. Rates of convergence

In this section we prove that kth-variational eigenvalue of problem (1.5) converges to the kth-variational 
eigenvalue of the limit problem (1.6).

Moreover, our goal is to estimate the rate of convergence between the eigenvalues. That is, we want to 
find explicit bounds for the error |λε

k − λk|.
We begin this section by proving some auxiliary results that are essential in the remaining of the paper.
We first prove a couple of lemmas in order to prove Theorem 3.4 which is a generalization for p �= 2 of 

Oleinik’s Lemma [18].
We start with an easy Lemma that computes the Poincaré constant on the cube of side ε in terms of the 

Poincaré constant of the unit cube. Although this result is well known and its proof follows directly by a 
change of variables, we choose to include it for the sake of completeness.

Lemma 3.1. Let Q be the unit cube in RN and let cq be the Poincaré constant in the unit cube in Lq, q ≥ 1, 
i.e.

‖u− ū‖Lq(Q) ≤ cq‖∇u‖Lq(Q), for every u ∈ W 1,q(Q),

where ū is the average of u in Q. Then, for every u ∈ W 1,q(Qε) we have

‖u− ū‖Lq(Qε) ≤ cqε‖∇u‖Lq(Qε),

where Qε = εQ.

Proof. Let u ∈ W 1,q(Qε). We can assume that ū = 0. Now, if we denote uε(y) = u(εy), we have that 
uε ∈ W 1,q(Q) and by the change of variables formula, we get

∫
Qε

|u|q =
∫
Q

|uε|qεN ≤ cqqε
N

∫
Q

|∇uε|q = cqqε
q

∫
Qε

|∇u|q.

The proof is now complete. �
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Remark 3.2. In [1], Acosta and Duran show that for convex domains U , one has

‖u− ū‖L1(U) ≤
d

2‖∇u‖L1(U),

where d is the diameter of U . When we apply this result to the unit cube, we get

c1 ≤
√
N

2 . (3.1)

The next Lemma is the final ingredient in the estimate of Theorem 3.4.

Lemma 3.3. Let Ω ⊂ R
N be a bounded domain and denote by Q the unit cube in RN . Let g ∈ L∞(RN ) be a 

Q-periodic function such that ḡ = 0. Then the inequality

∣∣∣∣
∫
Ω

g

(
x

ε

)
v

∣∣∣∣ ≤ ‖g‖L∞(RN )c1ε‖∇v‖L1(Ω)

holds for every v ∈ W 1,1
0 (Ω), where c1 is the Poincaré constant given in (3.1).

Proof. Denote by Iε the set of all z ∈ Z
N such that Qz,ε ∩Ω �= ∅, Qz,ε := ε(z +Q). Given v ∈ W 1,1

0 (Ω) we 
extended by 0 outside Ω and consider the piecewise function v̄ε given by the formula

v̄ε|Qz,ε
= 1

εN

∫
Qz,ε

v(y)dy in Qz,ε.

We denote by Ω1 =
⋃

z∈Iε Qz,ε ⊃ Ω and by gε(x) = g(xε ). Then we have

∫
Ω

gεv =
∫
Ω1

gε(v − v̄ε) +
∫
Ω1

gεv̄ε. (3.2)

Now, by Lemma 3.1 we get

‖v − v̄ε‖L1(Ω1) =
∑
z∈Iε

∫
Qz,ε

|v − v̄ε|dx

≤ c1ε
∑
z∈Iε

∫
Qz,ε

∣∣∇v(x)
∣∣dx

≤ c1ε‖∇v‖L1(Ω). (3.3)

Finally, since ḡ = 0 and since g is Q-periodic, we get

∫
Ω1

gεv̄ε =
∑
z∈Iε

v̄ε|Qz,ε

∫
Qz,ε

gε = 0. (3.4)



J.F. Bonder et al. / J. Math. Anal. Appl. 423 (2015) 1427–1447 1435
Now, combining (3.3) and (3.4) we can bound (3.2) by
∣∣∣∣
∫
Ω

gεv

∣∣∣∣ ≤ ‖g‖L∞(RN )c1ε‖∇v‖L1(Ω).

This finishes the proof. �
The next Theorem is essential to estimate the rate of convergence of the eigenvalues since it allows us 

to replace an integral involving a rapidly oscillating function with one that involves its average in the unit 
cube.

Theorem 3.4. Let g ∈ L∞(RN ) be a Q-periodic function such that 0 < g− ≤ g ≤ g+ < ∞. Then,

∣∣∣∣
∫
Ω

(
gε(x) − ḡ

)
|u|p

∣∣∣∣ ≤ pc1‖g − ḡ‖L∞(RN )ε‖u‖p−1
Lp(Ω)‖∇u‖Lp(Ω)

for every u ∈ W 1,p
0 (Ω). Here, c1 is the optimal constant in Poincaré’s inequality in L1(Q) given by (3.1).

Proof. Let ε > 0 be fixed. Now, denote by hε(x) = h(xε ) = g(xε ) − ḡ and so, by Lemma 3.3 we obtain

∣∣∣∣
∫
Ω

hε|u|p
∣∣∣∣ ≤ ‖h‖L∞(RN )c1ε

∥∥∇(
|u|p

)∥∥
L1(Ω). (3.5)

An easy computation shows that

∥∥∇(
|u|p

)∥∥
L1(Ω) ≤ p‖u‖p−1

Lp(Ω)‖∇u‖Lp(Ω). (3.6)

Finally, combining (3.5) and (3.6) we obtain the desired result. �

Now we are ready to prove the main result of this section.

Theorem 3.5. Let λε
k be the kth-variational eigenvalue associated to Eq. (1.5) and let be λk be the kth-

variational eigenvalue associated to the limit problem (1.6). Then

∣∣λε
k − λk

∣∣ ≤ c1p‖ρ− ρ̄‖∞
(
ρ+

α

)1/p 1
ρ−

εmax
{
λk, λ

ε
k

}1+ 1
p .

Proof. Let δ > 0 and let Gk
δ ⊂ W 1,p

0 (Ω) be a compact, symmetric set of genus k such that

λk = inf
G∈Γk

sup
u∈G

∫
Ω
Φ(x,∇u)

ρ̄
∫
Ω
|u|p = sup

u∈Gk
δ

∫
Ω
Φ(x,∇u)

ρ̄
∫
Ω
|u|p + O(δ).

We use now the set Gk
δ , which is admissible in the variational characterization of the kth-eigenvalue of 

(1.5), in order to found a bound for it as follows,

λε
k ≤ sup

u∈Gk
δ

∫
Ω
Φ(x,∇u)∫
Ω
ρε|u|p

= sup
u∈Gk

δ

∫
Ω
Φ(x,∇u)

ρ̄
∫
Ω
|u|p

ρ̄
∫
Ω
|u|p∫

Ω
ρε|u|p

. (3.7)
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To bound λε
k we look for bounds of the two quotients in (3.7). For every function u ∈ Gk

δ we have that

∫
Ω
Φ(x,∇u)

ρ̄
∫
Ω
|u|p ≤ sup

v∈Gk
δ

∫
Ω
Φ(x,∇v)

ρ̄
∫
Ω
|v|p = λk + O(δ). (3.8)

Since u ∈ Gk
δ ⊂ W 1,p

0 (Ω), by Theorem 3.4 we obtain that

ρ̄
∫
Ω
|u|p∫

Ω
ρε|u|p

≤ 1 + c1pε‖ρ− ρ̄‖∞
‖u‖p−1

Lp(Ω)‖∇u‖Lp(Ω)∫
Ω
ρε|u|p

. (3.9)

Now, by (1.2), (2.1) together with (3.8), we have

‖u‖p−1
Lp(Ω)‖∇u‖Lp(Ω)∫

Ω
ρε|u|p

≤ ρ̄1/p

ρ−

(∫
Ω
|∇u|p dx∫
Ω
ρ̄|u|p

)1/p

≤
(
ρ̄

α

)1/p 1
ρ−

(∫
Ω
Φ(x,∇u)∫
Ω
ρ̄|u|p

)1/p

≤
(
ρ̄

α

)1/p 1
ρ−

(
λk + O(δ)

)1/p
. (3.10)

Then combining (3.7), (3.8), (3.9) and (3.10) we find that

λε
k ≤

(
λk + O(δ)

)(
1 + c1p‖ρ− ρ̄‖∞

(
ρ̄

α

)1/p 1
ρ−

ε
(
λk + O(δ)

)1/p)
.

Letting δ → 0 we get

λε
k − λk ≤ c1p‖ρ− ρ̄‖∞

(
ρ̄

α

)1/p 1
ρ−

ελ
1+ 1

p

k . (3.11)

In a similar way, interchanging the roles of λk and λε
k, we obtain

λk − λε
k ≤ c1p‖ρ− ρ̄‖∞

(
ρ+

α

)1/p 1
ρ̄
ε
(
λε
k

)1+ 1
p . (3.12)

So, from (3.11) and (3.12), we arrive at

∣∣λε
k − λk

∣∣ ≤ c1p‖ρ− ρ̄‖∞
(
ρ+

α

)1/p 1
ρ−

εmax
{
λk, λ

ε
k

}1+ 1
p ,

and so the proof is complete. �
It would be desirable to give a precise rate of convergence in terms of ε, k and the coefficients of the 

problem. In order to achieve this goal, we need to give explicit bounds on the eigenvalues λk and λε
k. But 

this follows by comparison with the kth-variational eigenvalue of the p-Laplacian, μk and a refinement of 
the bound on μk proved in [13].
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In fact, from (2.1) we have

α

ρ̄

∫
Ω
|∇u|p∫

Ω
|u|p ≤

∫
Ω
Φ(x,∇u)∫
Ω
ρ̄|u|p ≤ β

ρ̄

∫
Ω
|∇u|p∫

Ω
|u|p ,

α

ρ+

∫
Ω
|∇u|p∫

Ω
|u|p ≤

∫
Ω
Φ(x,∇u)∫
Ω
ρε|u|p

≤ β

ρ−

∫
Ω
|∇u|p∫

Ω
|u|p ,

from where it follows that

max
{
λk, λ

ε
k

}
≤ β

ρ−
μk.

Now, in [13], it is shown that

μk ≤ μ̃1

(
k

|Ω|

)p/N

where μ̃1 is the first Dirichlet eigenvalue for the p-laplacian in the unit cube. Finally, in [12] an estimate for 
μ̃1 by comparing with the first eigenvalue of the pseudo p-laplacian is obtained, namely

μ̃1 ≤ max
{
N (p−2)/2, 1

}
Nπp

p ,

where πp is defined in Section 2.2.
Combining all of these facts, we immediately prove

Theorem 3.6. With the same assumptions and notations as in Theorem 3.5 we have
∣∣λk − λε

k

∣∣ ≤ Cεk
p+1
N ,

where the constant C is given by

C =
√
N

2 p‖ρ− ρ̄‖∞
(
βp+1

α

) 1
p 1
(ρ−)2

(
ρ+

ρ−

) 1
p

πp+1
p N

p+1
p max

{
N

p−2
2 , 1

} p+1
p .

Remark 3.7. As we mentioned in the introduction, in the linear case and in one space dimension Castro and 
Zuazua [7] prove that, for k < Cε−1,

∣∣λε
k − λk

∣∣ ≤ Ck3ε.

If we specialize our result to this case, we get the same bound. The advantage of our method is that very 
low regularity on ρ is needed (only L∞). However, the method in [7], making use of the linearity of the 
problem, gives precise information about the behavior of the eigenfunctions uε

k.
Moreover, in the one dimensional linear case with diffusion coefficient equal to 1, we can simplify the 

constant and obtain

∣∣λε
k − λk

∣∣ ≤ ‖ρ− ρ̄‖∞
(ρ−)2

√
ρ+

ρ−
(πk)3ε

Remark 3.8. In [14,15], Kenig, Lin and Shen studied the linear case in any space dimension (allowing a 
periodic oscillation diffusion matrix) and prove the bound

∣∣λε
k − λk

∣∣ ≤ Cε| log ε|1+σλ
3
2 .
k
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for some σ > 0 and C depending on σ and k (The authors can get rid off the logarithmic term assuming 
more regularity on Ω). If we specialize our result to this case, we cannot treat an ε dependence on the 
operator, we get the same dependence on k but without any regularity assumption on Ω we get the optimal 
dependence on ε.

4. The one dimensional problem

In this section we consider the following one dimensional problems

{
−(|u′

ε|p−2u′
ε)′ = λερ(xε )|uε|p−2uε in I := (0, 1)

uε(0) = uε(1) = 0,
(4.1)

and the limit problem

{
−(|u′|p−2u′)′ = λρ̄|u|p−2u in I

u(0) = u(1) = 0,
(4.2)

where ρ is 1-periodic and ρ̄ is the average of ρ in the unit interval.
In order to prove the rate of convergence, let us assume first that ρ̄ = 0 and let R(x) =

∫ x

0 ρ(t) dt. Then 
R is 1-periodic and if we denote Rε(x) = R(xε ), we get

εR′
ε(x) = ρ

(
x

ε

)
.

Hence, if v ∈ W 1,1
0 (I),

1∫
0

ρ

(
x

ε

)
v(x) dx = ε

1∫
0

R′
ε(x)v(x) dx = −ε

1∫
0

Rε(x)v′(x) dx.

So

∣∣∣∣∣
1∫

0

ρ

(
x

ε

)
v(x) dx

∣∣∣∣∣ ≤ ε‖R‖∞
1∫

0

∣∣v′(x)
∣∣ dx.

It is easy to see that

‖R‖∞ ≤
∥∥max{ρ, 0}

∥∥
1 = 1

2‖ρ‖1,

since ρ̄ = 0.
We have proved

Lemma 4.1. Let v ∈ W 1,1
0 (I) and ρ ∈ L1(I) be such that ρ̄ :=

∫ 1
0 ρ(x) dx = 0. Then

∣∣∣∣∣
1∫

0

ρ

(
x

ε

)
v(x) dx

∣∣∣∣ ≤ 1
2‖ρ‖1ε‖v′‖1.
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Then we get the following corollary

Corollary 4.2. Let u ∈ W 1,p
0 (I) and ρ ∈ L1(I). Then

∣∣∣∣∣
1∫

0

(
ρ

(
x

ε

)
− ρ̄

)∣∣u(x)
∣∣p dx

∣∣∣∣∣ ≤ p

2ε‖ρ− ρ̄‖1‖u‖p−1
p ‖u′‖p.

Proof. It follows just by noticing that

1∫
0

∣∣(|u|p)′∣∣ dx = p

1∫
0

|u|p−1|u′| dx ≤ p‖u‖p−1
p ‖u′‖p

and applying Lemma 4.1. �
Now if we argue exactly as in Theorem 3.5 but use Corollary 4.2 instead of Theorem 3.4, we get

∣∣λε
k − λk

∣∣ ≤ p

2‖ρ− ρ̄‖1
ρ

1
p

+
ρ−

εmax
{
λk, λ

ε
k

}1+ 1
p .

The bound for λk, λε
k follows directly from Theorem 2.3. In fact,

λk, λ
ε
k ≤ 1

ρ−
μk = 1

ρ−
(πpk)p.

So we have proved:

Theorem 4.3. The following estimate holds

∣∣λε
k − λk

∣∣ ≤ p

2
‖ρ− ρ̄‖1

ρ2
−

(
ρ+

ρ−

) 1
p

ε(πpk)p+1.

Remark 4.4. If we replace the unit interval I = (0, 1) by I	 = (0, �) by a simple change of variables, the 
estimates of Theorem 4.3 are modified as

∣∣λε
k(I	) − λk(I	)

∣∣ = �p
∣∣λε

k(I) − λk(I)
∣∣. (4.3)

Remark 4.5. This theorem gives almost the same results as Theorem 3.5. Nevertheless, we wish to provide 
an alternative and simpler proof exploiting the one dimensional nature of the problem.

5. The general one dimensional equation

In this section we consider, for the one dimensional problem the case where an oscillating coefficient in 
the equation is allowed. i.e., the problem

{
−(a(xε )|u′|p−2u′)′ = λερ(xε )|u|p−2u in (0, 1) (5.1)

u(0) = u(1) = 0
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We will show that this case can be reduced to Theorem 4.3 by a suitable change of variables. In fact, if 
we define

Pε(x) =
x∫

0

1
aε(s)1/(p−1) ds = ε

x/ε∫
0

1
a(s)1/(p−1) ds = εP

(
x

ε

)

and perform the change of variables

(x, u) → (y, v)

where

y = Pε(x) = εP

(
x

ε

)
, v(y) = u(x).

By simple computations we get{
−(|v̇|p−2v̇)· = λεQε(y)|v|p−2v, y ∈ [0, Lε]
v(0) = v(Lε) = 0

where

· = d/dy,

with

Lε =
1∫

0

1
aε(s)1/(p−1) ds → L = a

−1
p−1 ,

and

Qε(y) = aε(x)1/(p−1)ρε(x)

= a

(
P−1

(
y

ε

))1/(p−1)

ρ

(
P−1

(
y

ε

))

= Q

(
y

ε

)
.

Observe that Q is an L-periodic function.
Moreover, it is easy to see that

|Lε − L| ≤ εL (5.2)

and that Lε = L if ε = 1/j for some j ∈ N.
In order to apply Theorem 4.3 we need to rescale to the unit interval. So we define

w(z) = v(Lεz), z ∈ I

and get {
−(|ẇ|p−2ẇ)· = Lp

ελ
εQε(Lεz)|w|p−2w in I
w(0) = w(1) = 0
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So if we denote δ = εL/Lε, μδ = Lp
ελ

ε and g(z) = Q(Lz), we get that g is a 1-periodic function and that w
verifies {

−(|ẇ|p−2ẇ)· = μδg( zδ )|w|p−2w in I

w(0) = w(1) = 0

Now we can apply Theorem 4.3 to the eigenvalues μδ to get

∣∣μδ
k − μk

∣∣ ≤ p

2
‖g − ḡ‖1

g2
−

(
g+

g−

) 1
p

δ(πpk)p+1. (5.3)

In the case where ε = 1/j with j ∈ N we directly obtain

∣∣λε
k − λk

∣∣ ≤ 1
Lp

p

2
‖g − ḡ‖1

g2
−

(
g+

g−

) 1
p

ε(πpk)p+1.

In the general case, one has to measure the defect between L and Lε. So,

∣∣λε
k − λk

∣∣ ≤ 1
Lp

(∣∣μδ
k − μk

∣∣ + λε
k

∣∣Lp
ε − Lp

∣∣) ≤ 1
Lp

(∣∣μδ
k − μk

∣∣ + β

ρ−
πp
pk

p
∣∣Lp

ε − Lp
∣∣). (5.4)

From (5.2) it is easy to see that ∣∣∣∣∣
(
Lε

L

)p

− 1

∣∣∣∣∣ ≤ p(1 + ε)p−1ε,

so

∣∣Lp
ε − Lp

∣∣ = Lp

∣∣∣∣∣
(
Lε

L

)p

− 1

∣∣∣∣∣ ≤ pLp(1 + ε)p−1ε. (5.5)

Finally, using (5.3), (5.4) and (5.5) we obtain:

Theorem 5.1. Let λε
k be the kth-eigenvalue of

{
−(a(xε )u′)′ = λερ(xε )|u|p−2u in I = (0, 1)
u(0) = u(1) = 0

and let λk be the kth-eigenvalue of the homogenized limit problem{
−(a∗p|u′|p−2u)′ = λρ̄|u|p−2u in I

u(0) = u(1) = 0,

where a∗p = (
∫ 1
0 a−

1
p−1 dt)−(p−1).

Then, if ε = 1/j for some j ∈ N,

∣∣λε
k − λk

∣∣ ≤ 1
Lp

p

2
‖g − ḡ‖1

g2
−

(
g+

g−

) 1
p

ε(πpk)p+1

and if ε �= 1/j,

∣∣λε
k − λk

∣∣ ≤ 1
Lp

p

2
‖g − ḡ‖1

g2
−

(
g+

g−

) 1
p ε

1 − ε
(πpk)p+1 + β

ρ−
pLp(1 + ε)p−1ε(πpk)p.
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6. Convergence of nodal domains

In this section we prove the following result about the convergence of the nodal sets and of the zeros of 
the eigenfunctions.

Theorem 6.1. Let (λε
k, u

ε
k) and (λk, uk) be eigenpairs associated to Eqs. (4.1) and (4.2) respectively. We 

denote by N ε
k and Nk the nodal domains of uε

k and uk respectively. Then
∣∣N ε

k

∣∣ → |Nk| as ε → 0

and we have the estimate
∣∣∣∣N ε

k

∣∣−p − |Nk|−p
∣∣ ≤ cε

(
kp+1 + 1

)
Proof. By using Theorem 3.6, together with (4.3) and the explicit form of the eigenvalues of the limit 
problem we obtain that

λε
k(I) = λε

1
(
N ε

k

)
≤ λ1

(
N ε

k

)
+ c

∣∣N ε
k

∣∣p−1
ε ≤

πp
p

ρ|N ε
k |p

+ cε, (6.1)

where λε
k(a, b) denotes the k−th variational eigenvalue of problem (4.1) posed on the interval (a, b); analo-

gously for λk(a, b).
Also,

λε
k(I) ≥ λk(I) − cεkp+1 =

kpπp
p

ρ
− cεkp+1. (6.2)

As wk(x) = sinp(kπpx) (see Theorem 2.3: the notation used in the theorem is different from that used here) 
has k nodal domain in I we must have |Nk| = k−1. Then by (6.1) and (6.2) we get

πp
p

ρ|Nk|p
− cεkp+1 ≤ 1

|N ε
k |p

πp
p

ρ
+ cε

it follows that

|Nk|−p −
∣∣N ε

k

∣∣−p ≤ cε
(
kp+1 + 1

)
. (6.3)

Similarly we obtain that

πp
p

ρ|Nk|p
= λ1(Nk) = λk(I) ≥ λε

k(I) − cεkp+1 ≥ λε
1
(
N ε

k

)
− cεkp+1

and using again Theorem 3.6 we get

λε
1
(
N ε

k

)
≥ λ1

(
N ε

k

)
− cε =

πp
p

ρ|N ε
k |p

− cε

it follows that

∣∣N ε
k

∣∣−p − |Nk|−p ≤ cε
(
kp+1 + 1

)
. (6.4)

Combining (6.3) and (6.4) the result follows. �
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Finally, as a corollary of Theorem 6.1 we are able to prove the individual convergence of the zeroes of 
the eigenfunctions of (4.1) to those of the limit problem (4.2).

Corollary 6.2. Let (λε
k, u

ε
k) and (λk, uk) be eigenpairs associated to Eqs. (4.1) and (4.2) respectively. Denote 

xε
j and xj, 0 ≤ j ≤ k their respective zeroes. Then for each 1 < j < k

xε
j → xj when ε → 0

and

∣∣xε
j − xj

∣∣ ≤ jcε
(
kp+1 + 1

)
.

In particular xε
0 = x0 = 0 and xε

k = xk = 1 by the boundary condition.

Proof. With the notation of Theorem 6.1 we have that |N ε
k | → |Nk|. For the first pair of nodal domains we 

get

∣∣xε
1 − x1

∣∣ =
∣∣xε

1 − xε
0 − x1 + x0

∣∣ =
∣∣∣∣N ε

k,1
∣∣− |Nk,1|

∣∣ ≤ cε
(
kp+1 + 1

)
for the second couple

∣∣(xε
2 − x2

)
−

(
xε

1 − x1
)∣∣ =

∣∣∣∣N ε
k,2

∣∣− |Nk,2|
∣∣ ≤ cε

(
kp+1 + 1

)
then

∣∣xε
2 − x2

∣∣ ≤ cε
(
kp+1 + 1

)
+

∣∣xε
1 − x1

∣∣ ≤ 2cε
(
kp+1 + 1

)
.

We iterate the reasoning for j < k,

∣∣xε
j − xj

∣∣ ≤ jcε
(
kp+1 + 1

)
and the proof is complete. �
7. Some examples and numerical results

We define the following Prüfer transformation:

{
(λρ(x)

p−1 )1/pu(x) = r(x)Sp(ϕ(x)),

u′(x) = r(x)Cp(ϕ(x))
(7.1)

As in [19], we can show that r(x) and ϕ(x) are continuously differentiable functions, whenever ρ ∈ C1(I), 
satisfying

⎧⎨
⎩

ϕ′(x) = (λρ(x)
p−1 )

1
p + 1

p
ρ′(x)
ρ(x) |Cp(ϕ(x))|p−2Cp(ϕ(x))Sp(ϕ(x))

r′(x) = 1
p
ρ′(x)
ρ(x) r(x)|Sp(ϕ(x))|p

(7.2)

and we obtain that



1444 J.F. Bonder et al. / J. Math. Anal. Appl. 423 (2015) 1427–1447
Fig. 1. The square root of the first eigenvalue as a function of ε when ρ(x) = 2 + sin(2πx).

uk(x) =
(
λkρ(x)
p− 1

)−1/p

rk(x)Sp

(
ϕk(x)

)
, k ≥ 1

is a eigenfunction of problem (2.4) corresponding to λk with zero Dirichlet boundary conditions.
We propose the following algorithm to compute the eigenvalues of problem (2.4) based in the fact that 

the eigenfunction associate to λk has k nodal domains in I, so the phase function ϕ must vary between 0
and kπp. It consists in a shooting method combined with a bisection algorithm (a Newton–Raphson version 
can be implemented too).

Let a < λ < b and let τ be the tolerance
Solve the ODE (7.2) and obtain ϕλ and ρλ
Let w(x) = (p− 1)1/p(λρ(x))−1/prλ(x)Sp(ϕλ(x))
Let α = w(1)
while (|α| ≥ τ)

λ = (a + b)/2
Solve the ODE (7.2) and obtain ϕλ and ρλ
Let w(x) = (p− 1)1/p(λρ(x))−1/prλ(x)Sp(ϕλ(x))
Let β = w(1)
If (αβ < 0)

b = (a + b)/2
else

a = (a + b)/2
end while
Then λ is the approximation of eigenvalue with error ≤ τ

For example, let us consider ρ(x) = 2 + sin(2πx). In this case we obtain that ρ =
∫
I
2 + sin(2πx)dx = 2, 

and the eigenvalues of the limit problem are given by

λ
1/p
k = kπp

21/p .

When ε tends to zero the value of λε tends to the limit value λ displaying oscillations.
When p = 2 the first limit eigenvalue is 

√
λ1 = π/

√
2 ∼ 2.221441469. We see the oscillating behavior 

when plot 
√
λε

1 as function of ε in Fig. 1.
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Fig. 2. The square root of the first eigenvalue as a function of ε when ρ(x) = 1
2+sin 2πx .

Fig. 3. The first eigenfunctions and the difference between them for different values of ε.

A more complex behavior can be found in Fig. 2, where we considered the weight ρ(x) = 1
2+sin 2πx . We 

observe that the sequence tends to

λ1 = π2
/∫

I

1
2 + sin 2πxdx =

√
3π ∼ 17.09465627.

It is not clear why the convergence of the first eigenvalue display the oscillations and the monotonicity 
observed (although the monotonicity is reversed for the weight ρ(x) = 2 − sin 2πx). We believe that some 
Sturmian type comparison theorem with integral inequalities for the weights (instead of point-wise inequal-
ities as usual) is involved. However, we are not able to prove it, and for higher eigenvalues it is not clear 
what happens.

Turning now to the eigenfunctions, with the weight ρ(x) = 2 + sin(2πx), the normalized eigenfunction 
associated to the first eigenvalue of the limit problem is given by u1(x) = π−1 sin(πx). Applying the 
numerical algorithm we obtain that the graph of an eigenfunction associated to the first eigenvalue λε

1
intertwine with the graph of u1(x). When ε decreases, the number of crosses increases, and the amplitude 
of the difference between them decreases. In Fig. 3 we can observe this behavior and the difference between 
u1 and uε

1 for different values of ε.
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Fig. 4. The fourth eigenfunctions and the difference between them for different values of ε.

To our knowledge, it is not known any result about the number of the oscillations as ε decreases, nor it 
is known if those oscillations disappear for ε sufficiently small.

The same behavior seems to hold for the higher eigenfunctions, see in Fig. 4 the behavior of the fourth 
eigenfunction uε

4 when the parameter ε decrease.
Here, the convergence of the nodal domains and the fact that the restriction of an eigenfunction to 

one of its nodal domains N coincides with the first eigenfunction of the problem in N , together with the 
continuous dependence of the eigenfunctions on the weight and the length of the domain, suggest that the 
presence or not of oscillations for the higher eigenfunctions must be the same as for the first one. However, 
the computations show very complex patterns in the oscillations.
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